
Azure Tips and Tricks
 azuredev.tips

ISBN 978-1-7327041-2-1

Introduction

When I reflect back on Azure Tips and Tricks a year ago, I was only thinking that I’d write
a couple of posts and move on. Fast-forward to today, the collection has grown to over
150+ tips, as well as videos, conference talks, and now an eBook spanning the entire
universe of the Azure platform. What you are currently reading is a special collection of
tips based on page views of the entire series over the last year. I’ve grouped the top tips
and landed on four categories that cover web, data, serverless, and productivity. Before
we dive in, you’ll notice my pixelated form as you turn each page.

These represent:

You can stay up to date with the latest
Azure Tips and Tricks at:

• Blog - azuredev.tips
• Videos - videos.azuredev.tips
• eBook - ebook.azuredev.tips
• Survey - survey.azuredev.tips

I hope you enjoy reading the eBook
as much as I did writing it.

Thanks,
Michael Crump (@mbcrump)

Something I found
 interesting and you

may too.

Additional resources
to get the most out

of this tip.

A key takeaway from
the tip.

Hi, folks!

http://azuredev.tips
http://videos.azuredev.tips
http://ebook.azuredev.tips
http://survey.azuredev.tips
http://twitter.com/mbcrump

Table of Contents

1

4

3
2

WEB

PRODUCTIVITY

SERVERLESS

DATA

WEB

If you’ve used Azure, you’ve more than likely used Azure App
Service to easily host web applications, REST APIs, and mobile
back ends. In this set of tips, I’ve pulled out the top 6 tips since the
creation of Azure Tips and Tricks for Azure App Service. They include
easily working with files in the console, easily setting up staging
environments and swapping between them, and routing traffic to
different versions of your app to “Test in Production”. I’ll also cover
how you can implement performance testing, best practices for
App Settings in Azure App Service, and cloning a web app that is
especially helpful if you have customers all over the world.

 Back to Table of Contents

We’ll take a look at the files inside an Azure App Service
web site and how you can easily work with them.

Console Access to my App Service

Go to the Azure Portal and select my App Service. Click on
Console under Development Tools to have a command
prompt to quickly work with my Azure App Service.

As you can tell from the screenshot, I start in D:\home\site\wwwroot. I can type dir to see a
current directory listing.

Working with Files in Azure App Service

You can learn
more about
Azure App

Service
here

https://azure.microsoft.com/en-us/services/app-service/

I can do basic commands here and even use TYPE <FILENAME> to parse
the output of a file to the screen. You can make directory and so forth, but
keep in mind that this is a sandbox environment and some commands
which require elevated permissions may not work. Quick Tip You can

type help from the
console window for

a list of available
commands.

A VS Code Experience to an Azure App Service
There is also another option that is called “App Service Editor” located just
two items down from “Console” that you picked before.

A VS Code Experience to an Azure App Service

 If you’re familiar
with VS Code, then

you’ll be right at
home as you can
explore, search
and add to Git.

You can also
manipulate files
from within the
window. This

makes it easy to
add, edit or
 delete files.

Just like in VS Code, you can modify your
settings and even change your theme.

No App Service tutorial is complete without
mentioning Kudu Diagnostic Console. You can
access it from within the App Service Editor
under your app name -> Open Kudu Console
or through the portal under Advanced Tools.

Kudu Diagnostic Console

You can just click on the folder name to navigate or type in the command.
You can also easily manipulate the files, but I like the App Service Editor
better for that functionality.

Editor is perfect for lightweight work such as editing files whereas
Kudu puts you deep into the weeds with debugging information, file
manipulation and more.

The main reason that I typically come to the Kudu Diagnostic Console
 is to download files.

Quick Tip The App
Service Editor is a

great choice if ever
in doubt and you

can access it
directly here

 https://yoursitename.scm.azurewebsites.net/dev/

 You can learn
more about Azure
Deployment Slots

here

We’ll take a look at the files inside an Azure App Service
web site and how you can easily work with them.

Creating Deployment Slot

Deployment slots let you deploy different versions of your
web app to different URLs. You can test a certain version and
then swap content and configuration between slots.
Go to the Azure Portal and select my App Service and click
on Deployment Slots under Deployment to get started.
Then click on the Add Slots button. Give it a name such
as staging then use an existing configuration source. We’ll
use our “production” web app. You know, the cool quiz
application. Aka.ms/azuretips/myquizapp

Test Web Apps in Production
with Azure App Service

Great, now if we go back to Deployment Slots, we should see it running.

https://docs.microsoft.com/en-us/azure/app-service/web-sites-staged-publishing
http://aka.ms/azuretips/myquizapp

Click on the new staging site that we just created and you’ll notice that it
has appended the word staging. You’ll also notice we have
a new site: Aka.ms/azuretips/quizsourcegit

We need to push a new version of our existing quiz application to this
staging slot. Go to Deployment Options and select External Repository.
Give it the following URL: Aka.ms/azuretips/quizsource and hit OK.”You
might have to hit Sync, and you’ll eventually see the following:

http://aka.ms/azuretips/quizsourcegit
http://aka.ms/azuretips/quizsource

Give it a couple of minutes until you see that it has completed
pulling down your code from Git and then go to the new URL of
your site. You can find the URL on your overview page. In my case
it is, http://myquizapplication-staging.azurewebsites.net/

Success! This is our new site as indicated by the awesome large
font that says jsQuizEngine version 2.

We could now return to the
original app service that we
created and swap between
the two sites that we have.

For example, you might
want to move the staging
site over to the production

site and vice versa. The
power of this is that your
users don’t experience a
downtime and you can

continue working in your
preferred space until ready

to move to production.

Source Code The source
code to the staging
environment can be

 found here

In this tip, we’ll look at a feature called Testing in Production which
allows you to test your application in production. Not scary at all!

 http://myquizapplication-staging.azurewebsites.net/
https://github.com/mbcrump/jsQuizEngine

Hold up! You’ll want to take
a look at the deployment
slots in the previous tip if
you haven’t worked with
deployment slots before.

Testing Web Apps in Production
with Azure App Service

Go to the Azure Portal and select my App Service and click on
Testing in Production under Development Tools to get started.
The first thing you’ll see is Static Routing and you’ll notice that it’s
looking for a deployment slot and traffic percentage.

What is Static Routing This
section lets you control
how traffic is distributed
between your production

and other slots. This is
useful if you want to try out
a new change with a small
percentage of requests and
then gradually increase the
percentage of requests that

get the new behavior.

We’ll want to split the traffic to our site into two groups to test
our new site and see if customers like it. Since this is just a demo,
I want to send a large number of folks to our new staging site as
shown below.

Great! Now keep in mind that we have two versions of our site:
one that is production and one that is staging. They are identical
except for the staging site has a large font that says jsQuizEngine
version 2.

We don’t want to swap sites, we just want to distribute traffic
between the two sites.

I can test this by going to my production URL and refreshing the
site until the staging site is shown with the production URL.

Success! It works, but what happens when they leave the site? We actually store a cookie
that keeps track of it. You can find this cookie yourself by inspecting the site and looking for

the cookie shown on the next page.

z

You could actually force the old production site by setting the
x-ms-routing-name cookie to self or providing it in the URL
query string such as http://myquizapplication.azurewebsites.
net/?x-ms-routing-name=self You could even use the URL to let
your users test different versions of your site. For example, I could
use http://myquizapplication.azurewebsites.net/?x-ms-routing-
name=staging to let users try my new website before I push it live.
This is very neat stuff, folks!

In this tip, we’ll look at a simple and quick way to
perform load testing of your web app.Learn more about load

testing at
Aka.ms/azuretips/vsts

 http://myquizapplication.azurewebsites.net/?x-ms-routing-name=self
 http://myquizapplication.azurewebsites.net/?x-ms-routing-name=self
http://myquizapplication.azurewebsites.net/?x-ms-routing-name=staging
http://myquizapplication.azurewebsites.net/?x-ms-routing-name=staging
http://Aka.ms/azuretips/vsts

Load Testing allows you to test your web app’s performance
and determine if your app can handle increased traffic during
peak times. You can find this tool by logging into your Azure
account, going to your App service that you created, and
looking under Development Tools.

Inside the blade, select New and you will
see the following options:

Load Testing web apps with
Azure App Services

You have the option to Configure Test and you can leave this
as Manual Test or Visual Studio Web Test. The main difference
between the two is that with the latter you can select multiple
URLs and even use a HTTP Archive file (such as one created by
Fiddler). Leave the testing option as manual and select a name
and location, and make sure you leave the defaults as 250
users for 5 minutes.

Use Case Scenario Suppose
you have a web app and you
have something for sale. You

have an upcoming promo
that last year had 175 users

connected for 5 minutes.
Users complained that the

site was slow and since
your site has grown, you

want to improve customer
satisfaction by reducing the

page load time and test
your web app with a load of
250 users for 5 minutes. Let

the test run and you’ll be
presented with the following

information once it has
completed:

Look out! Keep in mind
that there is a charge for
performing a load test in
terms of virtual users as

indicated in the screenshot.

We were able to do this
without writing code and
with just a couple of clicks

in the portal.

In this post, we’ll take advantage of App Settings to store
a Key/Value pair securely in Azure and access it in your web app.

Learn more about App
Settings at

 Aka.ms/azuretips/
appservconfig

http://aka.ms/azuretips/appservconfig
http://aka.ms/azuretips/appservconfig

App Settings are used to store configurable items without
making any changes to the code. The key/value pairs are
stored behind the scenes in a configuration store, which is nice
because sensitive information never shows up in a web.config,
etc. file. In order to take advantage of this, you’ll need to log
into your Azure account and go to your App Service that you
created and look under Development Tools then you will see
Application Settings.

Open it and scroll down and you’ll see App Settings
as shown below.

We’re going to add an App Setting in Azure. I added one with
the key of Environment and the value is set to Staging.

Working with App Settings
and Azure App Services

Open or create your ASP.NET MVC app and modify the
appSettings section of the web.config file to add our
Environment key/value pair as shown below:

If you run the application locally, then you’ll see Production as it is coming from the
web.config file, but if you run it inside of Azure, then you’ll see Staging as it is coming

from the Apps Settings configuration store located in Azure. Neat stuff!

Connection Strings vs. App Settings You may have noticed Connection
Strings right below the App Settings option and wonder when to use it. A

general rule of thumb is to use Connection Strings for database connection
strings and App Settings for key/value pair application settings. If you
examine your web.config file, then you’ll see there is also a section for

connectionStrings just as there is a section for appSettings.

Scenario: A company has an existing web app in West US, they
would like to clone the app to East US to serve folks that live on
that site with better performance such as latency.
To do this, log into your Azure account and go to your
App Service that you created. Look under Development Tools and
find Clone App.

Cloning Web Apps Using
and Azure App Services

Cloning is the ability to
duplicate an existing Web

App to a newly created
app that is often

in a different region. This
will enable customers to
deploy a number of apps

across different
regions quickly and easily.

Open it and
you’ll see the following:

Ensure you give it an:

•	 App Name - Something unique as this site will live in
something.azurewebsites.net

•	 Resource Group - Create a new one or use an existing one

•	 App Service Plan/Location - This is a good time to
associate a new plan that will determine the location,
features, and cost, and compute resources associated with
your app.

Hold Up Besides
changing the location,
this is also a great time
to determine the plan
needed. You might not

need all the horsepower
to serve this site if you

expect very low traffic in
that region.

•	 Application Insights - You can turn it on or off to help you
detect and diagnose issues with .NET apps.

•	 Clone Settings - Clone will copy the content and
certificates of your app into a newly created application.
You can also copy things like App Settings, Connection
Strings, Deployment Source, and Custom Domains.

Finally, there is Automation Options which brings you to the
Azure Resource Manager templates that are so valuable.
Aka.ms/azuretips/resourcemanager

http://Aka.ms/azuretips/resourcemanager

What is a Azure Resource
Manager again? Azure

Resource Manager enables
you to work with the resources

in your solution as a group.
You can deploy, update, or
delete all the resources for
your solution in a single,

coordinated operation. You
use a template for deployment
and that template can work for
different environments such as

testing, staging, and production.
Resource Manager provides

security, auditing, and tagging
features to help you manage

your resources after deployment.
Aka.ms/azuretips/

appservdeploy

Once everything is set up then
press Create and you’ll see

the Deployment in Progress
begin. You can click on it while

deploying to see details as
shown:

http://aka.ms/azuretips/appservdeploy
http://aka.ms/azuretips/appservdeploy

Data

Data and application development go hand in hand. It’s no wonder
that these four data tips were the best of all time for developers.
In this section, we’ll discover an easy way to configure backups to
create copies of your content, configuration, and database. We’ll also
take a look at how to work with streams in Azure Blob storage. In
addition, you’l learn how to work with our command line and tools
with Azure Storage, and discover a data migration tool that you can
use to move data into Azure Cosmos DB.

 Back to Table of Contents

Most folks don’t realize how easy it is to configure a backup copy of your
Azure App Service to ensure you have restorable archive copies of your
app and database. In order to take advantage of this, you’ll need to log
into your Azure account and go to your App Service that you created. Look
under Settings and you will see Backup.

Open it and select
Configure and you’ll
see the following
screen:

Configure a Backup for your
Azure App Service and Database

You can learn
more about
Azure App

Service
here

https://azure.microsoft.com/en-us/services/app-service/

 Quick Tip You can
type help from the
console window for

a list of available
commands.

I provided a Name, selected the Standard under the Performance option,
and used Locally-Redundant Storage (LRS) for Replication. For the location
field, please use the closest location nearest you.

Now you’ll need to configure a container to store your backup.

Next, you’ll want to make sure that Scheduled backup is set to On. You’ll
want to configure the Days and Hours and then the current schedule that it
should back up from. I set mine to back up every seven days, and starting
from now. You’ll also want to set the retention and by default it will keep at
least one backup. If you have a database, then you can also add it with just
a checkmark.

Once everything is set, you can see that the next backup is configured and
can either force it manually or restore from an existing backup with just a
visit to the Azure Portal. You typically want to use “manual” restore when
you want to look at your backup at the current point in time vs “restore” a
backup at a different time that occurred in the past.

Once completed,
you can click

on the backup
and see a

feature called
Snapshot which

automatically
creates periodic
restore points
of your app

when hosted in
a Premium App

Service plan.
You can even

download a zip
of the app.

Learn more about
Azure Cosmos DB

here

Migrating data from one format to another is a common
task for application developers (even if it is just for testing).
I was recently building out an API and needed to dump
some data into Cosmos DB. The tool that made short work
of this was the Azure DocumentDB Data Migration Tool.
In my case, I needed to dump a large JSON file into Cos-
mos DB. Here is how I did it.

Ensure you have a Cosmos DB database id and collection.
You can learn how to create a Cosmos DB by going to
https://docs.microsoft.com/en-us/azure/cosmos-db/
I’m using the following:

Using the Data Migration
Tool with Cosmos DB

The Tools + Public Domain Sample Data

Get to work

Grab whatever
sample file that

you’d like to
experiment with.
For this exercise, I
selected a file that
is public domain

and contains a large
set of data.

I’m using the
 en_kjv.json JSON

file from here

Now we’re ready to
begin work!

https://azure.microsoft.com/en-us/services/cosmos-db
https://www.microsoft.com/en-us/download/confirmation.aspx?id=46436
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://github.com/thiagobodruk/bible/tree/master/json

Open the Data Migration Tool and under Source
Information, point to the local JSON file as shown below.

Go to Keys (inside your Cosmos DB blade in the portal) to
copy the Primary Connection String.

You’ll need to append the Database name to the end of the string.
For example: Database=bible will be appended to the string
AccountEndpoint=https://mbcrump.documents.azure.com:443/;Account-
Key=VxDEcJblah==;Database=bible that I copied out of the portal.
Now press Verify Connection.

Give it a couple of minutes until you see that it has
completed pulling down your code from Git and then go
to the new URL of your site. You can find the URL on your
overview page. In my case it is, http://myquizapplication-
staging.azurewebsites.net/

You’ll need to add the Collection and in my case it is verses.
We’ll take the defaults on the next two screens and you’ll
finally see a Confirm inport settings page.

You can even click on View Command to see the command that
will be used to migrate your data. This is helpful to just learn
the syntax.

You’ll finally see the Import has completed with 66 transferred.

If you go back to the Azure Portal, open Cosmos DB, and
look under Data Explorer, you’ll see the data has been
imported successfully into our collection.

Learn more about
our variety of data

options
here

Azure Storage is described as a service that provides
storage that is available, secure, durable, scalable, and
redundant. Azure Storage consists of 1) Blob storage, 2) File
Storage, and 3) Queue storage. In this tip, we’ll take a look
at how to upload and download a stream into an Azure
Storage Blob with C#.

Uploading and Downloading
a Stream into an Azure Storage Blob

https://azure.microsoft.com/en-us/product-categories/databases/

If you need help setting up
a project for the code below

then go here

Now that we’ve created the Azure Storage Blob Container,
we’ll upload a file to it. We’ll build off our last code snippet
and add the following lines of code to upload a file off our
local hard disk:

If we switch over to our Storage Account and navigate
inside the container, we’ll see our new file has been added:

Upload a File

https://www.michaelcrump.net/azure-tips-and-tricks75/

Now that we’ve uploaded a file to the Azure Storage Blob
Container, we’ll download a file from it.
We’ll build off our last code snippet and add the following lines
of code to download a file from our local hard disk and give it
new name:

Note that are now using the OpenWrite method and
specifying a new name. We are also taking advantage of the
DownloadToStream method. If we run the application, our new
file should be in the downloads folder.

Download a File

You can easily work with AzCopy to manipulate Azure Storage
containers and more. In this tip, we’ll explore AzCopy in the
context of Azure Storage containers.

For this example, I’m going to use Windows. After
I downloaded and installed the utility, I navigated
inside my command prompt to the following folder
%ProgramFiles(x86)%\Microsoft SDKs\Azure\AzCopy and ran
the azcopy.exe command to ensure everything was
working properly.

You may be wondering if you need to do the device login as
we did with the Azure CLI. The answer is no, we’ll be using our
Azure Storage Access Key.

Working with AzCopy and Azure Storage

What is AzCopy?
AzCopy is a command line
utility designed for copying

data to/from Microsoft
Azure Blob, File, and Table

storage, using simple
commands designed for

optimal performance.
 You can copy data between
a file system and a storage

account, or between
storage accounts.
(courtesy of docs)

You can download either
the latest version of AzCopy

on Windows or Linux .

http://aka.ms/downloadazcopy
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-linux

Go ahead and open the Azure Portal and navigate to the Azure
Storage account that we worked with earlier.

Look under Settings, then Access Keys and copy the key1.

We can easily download a file from our Azure Storage Blob
Container that we’ve been working with by using the following
command:

Store the key1 somewhere that you can retrieve it again.

Getting the Azure Storage Access Key

Kick the tires with a couple of commands.

http://www.michaelcrump.net/azure-tips-and-tricks74/

Finally, you can copy from one Azure Storage account to
another one with the following command:

Keep in mind: The main difference between these two commands is the use of SourceKey for
downloading and DestKey for uploading. The key that is being used is identical (named key1

from the example above).

In this case, I am copying a file named mikepicnew.png from
images-backup to images and then I’ll refresh the container.

We can do the reverse and upload a file from our hard disk to
Azure Storage Blob Container with the following command:

Serverless

In this set of tips, I’ve pulled out the top 4 tips from the serverless
topics and it is no surprise that they include Azure Logic Apps and
Azure Functions. We’ll begin with two tips that show how I used
Azure to help me track my running data with Azure Logic Apps and
OneDrive. Next we’ll look at how I create Azure Functions projects in
Visual Studio Code. Then we’ll wrap up with a way to use a different
route prefix with Azure Functions.

 Back to Table of Contents

I’d like to share a practical example of how I am using Azure in my daily
life. I’ve started running outdoors and would like to extract several bits
of information that the app on my phone generates and sends via email
once the run is complete. Currently I open the email and save the
kml, gpx, csv files to my OneDrive for historical purposes. There is a
better way with Azure.

Once a run is complete, the app that I use (Runmeter) generates an
email with a link to the run data (GPX, CSV, KML File) in the following
format:

The pieces of data that we’d like to extract are the kml, gpx, csv URLs
and the last piece of the Explorer Link URL. After we have the URLs we
are going to download them automatically into a OneDrive folder.

Fire up parser.Zapier.com and create a mailbox. You’ll need to send an
email to it as it will be your starting template. Once you’ve sent an email,
select the pieces of data that you want to use and give them a name. In
the example below, I’ve already selected four pieces of data and show
how to create a new one.

Tracking Run Data with Azure

Parse Emails to Be Used in a Azure Logic Apps

http://parser.Zapier.com

Now that you have your mailbox created and the parser engine knows
what data to extract, we can connect the app to the Zapier Editor But
first let’s review the pieces of data that we wanted to extract and why.

● Filename - This is the general filename that the app uses, and I think
		 it’s a piece of data we want to store.

● CSV URL - A URL to the CSV File that we’ll be posting to OneDrive.

● GPX URL - A URL to the GPX File that we’ll be posting to OneDrive.

● KML URL - A URL to the KML File that we’ll be posting to OneDrive.

http://zapier.com/app/editor

We need to create the JSON body which we’ll use to create the schema.
I used objgen.com/json to quickly create this piece, but you can just
manually type it if you want.

Create JSON Schema to Be Used
in Azure Logic Apps

http://objgen.com/json

Here is the JSON payload with some sample data:

Now I’ve clicked the “Copy” Button, headed over to jsonschema.net,
pasted it in, and my JSON schema was generated.

http://www.objgen.com/json

Too easy! Now head over to the Zapier Editor and create a new app.

You’ll want to use the New Email Trigger and use the Email Parser by Zapier
and allow it to connect to your mailbox that you created earlier.

http://zapier.com/app/editor

For the next step, you’ll want to use an Action that is a POST request that
uses Webhooks by Zapier. When you get to the point to where it asks you
for a URL, use requestb.in to see what your HTTP client is sending or to
inspect and debug webhook requests. Now you have a URL that you can
use for testing. Ensure your payload is set to JSON and now you can select
the data from your parsed email (filename, csv, kml, gpx). You can leave the
rest of the fields as they are. When you finish your screen should look
like the following:

https://requestb.in/

Go ahead and save and run the test. After you switch over to your
requestb.in you should see the output that matches the parsed data from
the email.

Create a new Azure Logic App by going to the Azure Portal and create
a new resource

Set up an HTTP Request Trigger that is
used in Azure Logic Apps

https://requestb.in

After the resource is ready, we’re are going to need to trigger an action
when an HTTP request comes in. Thankfully, this is one of
the Common Triggers and we can select it to begin.

Note that the URL isn’t generated until we provide the parameters.

Go ahead and press Edit. Remember the JSON Schema from the
last post? Well, now is the time to paste it in. I’ll also
include it below:

Note: You can use the “Use sample payload to generate schema” option,
but I prefer the additional meta data that JSON Schema can provide.

http://www.michaelcrump.net/azure-tips-and-tricks38/
https://jsonschema.net/#/editor

You’ll now have a GET URL that you can put in Zapier and replace
the requestb.in that we stubbed out earlier.

Head back over to Zapier Editor and modify your Zap by editing
the template and replacing the requestb.in URL with your live
Azure Logic Apps ones.

https://requestb.in
http://zapier.com/app/editor

Open our existing Azure Logic App and we’ll use OneDrive to
automatically upload the files to my personal OneDrive account.

Upload Files from a URL with
Azure Logic Apps

Typically, you’ll add an Action or Condition to trigger once the
HTTP request is complete.

We’ll select an Action as we want it to run every time vs. a
Condition which would use “If..then..” logic after the HTTP request
comes in. Select Action and search for “upload file to onedrive”
and you’ll see the following is available to use.

You’ll have to sign in to your OneDrive account.

Now you can pull the fields that we captured and use them as
dynamic content. For example, the GPX file contains the full URL,
so we can just use that dynamic field. For the destination URL,
we’ll construct the location we want it to go in our OneDrive
account. Note that I’ve also setup 2 additional OneDrive actions
for the KML and CSV file.

Now you’d want to send an email to your Zapier mailbox to test all
the pieces to this app. Now you can switch over to your OneDrive
account. If everything goes well and worked successfully you will
see your new files in your OneDrive folder.

If it doesn’t appear to be working, you should start by looking at
the Overview section, then the Run History as shown below.

Success! Our application is working properly.

I was able to create the app
in less time than it took to

write this up! Visual Studio Code is the best thing since coffee for developers
and if you pair it with Azure Functions... well, more awesome
happens. In this post, we’ll look at adding an Azure Function
project to Visual Studio Code.

Create an Azure Functions Project with
Visual Studio Code

https://code.visualstudio.com/

It is fairly easy as all you need to do is open VS Code, click on
Extensions, search for azure function, and install it as
shown below :

Once installed, you’ll need to reload the extension and
you should see your subscriptions.

You may need to sign in if Visual Studio Code hasn’t already
been authenticated.

Now you should create a project, then a function app, and select
which template that you want to use. After you select a template,
you’ll need to provide a name and an authorization level.

Just hit F5 and you have a local Azure Function running in
Visual Studio Code.

Remember this! You can
also add Azure Cloud Shell
to Visual Studio Code with

this tip!
Sometimes you have the requirement to use a different route
prefix than the one that Azure Functions auto-generates

For example: https://mynewapimc.azurewebsites.net/api/
HttpTriggerCSharp1 uses api before the function name. You
might want to either remove `api` or change it to another name.

I typically fix this by going into the Azure Portal and clicking
on my Azure Function. I then click on Platform Features and
Advanced tools(Kudu).

Using a different route prefix with
Azure Functions

http://www.michaelcrump.net/azure-tips-and-tricks49

I then navigate to wwwroot and hit edit on the host.json file.

Inside the editor, add the routePrefix to define the route prefix.
So if I wanted the route prefix to be blank, then I’d use the
following:

On the flip side, if I wanted a route prefix,
then I’d just add the following:

`

Keep in mind that best practice (as far as I can tell) is to use api, but wanted
to flag this as only you can make your design decisions.

Simply restart your Azure Function and now my URL is
accessible without api.

Productivity

If you jumped straight to this section, then you certainly understand
the spirit of what I originally wanted to achieve with Azure Tips and
Tricks - simply to be more productive with Azure. In this set of tips,
I’ve gone back to the first tip that I ever wrote describing how you
can use keyboard shortcuts within the Azure Portal to navigate more
effectively. We’ll also cover how you can apply tags to your Azure
resources to logically organize them by categories. We’ll wrap up
with using Azure Cloud Shell, which provides an interactive, browser-
accessible shell for managing Azure resources, and how you can
quickly take advantage of it with Visual Studio Code in the browser
or on your local development machine.

 Back to Table of Contents

Developers love keyboard shortcuts and there are plenty of
keyboard shortcuts in the Azure platform. You can see a list by
logging into the Azure Portal, clicking on the question mark
(or help icon), and selecting Keyboard Shortcuts.

You will see that you have the following
keyboard shortcuts available:

You can utilize tags to quickly organize Azure Resources.
For example, if you’d like to have a set of Resources for
“Production” and another for “Dev”, then you can
 quickly do that.

Azure Portal Keyboard Shortcuts

Use Tags to Quickly Organize
Azure Resources

 Continue checking the
site as new ones are being

added all the time!

CTRL+/	 Search blade menu items

ALT+SHIFT+Up Move favorites up

 ALT+SHIFT+Down Move favorites down

G+/ Search resources (global)

G+N Create a new resource

G+B Open the ‘More services’ pane

G+, Move focus to command bar

G+. Toggle focus between top bar and side bar

G+D Go to dashboard

G+A Move favorites up

G+R Move favorites down

G+number Search resources (global)

Actions

Navigation

Go to

Head over to the Azure Portal and select a service. In my
example, I’m going to select a Web App that I want to tag as a
Production App. Select the Tags menu and provide a Name and
Value as shown below.

I selected Environment and gave it the value of Production.
I then clicked Save. I could also do this for other Production
resources, and even tag the appropriate ones with Dev. I can
now take advantage of this ability by going to More Services,
typing Tags, and clicking on the Environment: Production as
shown below.

Remember this!
Tags are user-defined
 key/value pairs which

can be placed directly on
a resource or a resource

group.

You can even interact with Tags using Azure CLI 2.0. For
example, I can type az tag list -o json to list all the tags
associated with an account.

1. Results from searching “Tags”
2. Our Production Environment we just setup
3. List all the Web Apps with the Production Environment Tag
4. Pin the Blade to our Azure Portal Main Page

If you pin the blade (by pressing the pin in step 4) you’ll see the
following on your Azure Portal dashboard:

Recap: Make your life
easier by applying tags to
your Azure resources to

logically organize them by
categories.

Add Azure Cloud Shell
to Visual Studio Code

To add Azure Cloud Shell to VS Code, click on
Extensions and search for azure account.
Install it as shown below.

Once installed, go to View ->
Command Palette and type Open Bash in Cloud Shell.

Note: You can also open
PowerShell in Cloud Shell

with this extension!

Azure Cloud Shell
 is an interactive,

browser-accessible shell for
managing Azure resources.

Linux users can opt for
a Bash experience, while

Windows users can
 opt for PowerShell.

You'll need to sign in first, and Visual Studio Code makes
that simple by opening the browser and copying your device
authentication code. Once that is complete, you'll see:

Go back to View -> Command Palette and select Open Bash in
Cloud Shell again and it should spin up as shown below.

Quickly Edit Files Within Azure Cloud Shell
Using Visual Studio Code That You Know
and Love

Did you know that you can access Visual Studio Code within a
Cloud Shell instance?

Notice that you can do things such as navigate directories, and
also view files with the same syntax used in VS Code. You can easily
save and close the editor, open a file outside the current working
directory, and open the command palette.

I’m sure by now everyone has used the lovely
Visual Studio Code editor in some application before, but you
may not be aware that you can use the editor within Cloud Shell
without installing anything. To give this a spin, open up Cloud Shell
and type code . and you’ll see the following:

Very cool! If you want to see the source code for the app
it can be found here.

https://code.visualstudio.com/
https://github.com/Microsoft/vscode-azure-account

If you open the command palette you'll see a very familiar list of
commands that you've probably used in the editor
on your desktop.

And since this is based upon the open-source Monaco project that
powers Visual Studio Code, you can expect we'll see more features
added over time. As of the publication time of this eBook, it
automatically includes authorization for pre-installed open source
tools like Terraform, Ansible, and InSpec. So what are you waiting
for? Go check out now!

http://shell.azure.com

`

Conclusion

Thanks for reading and I hope that you enjoyed the top tips of
Azure Tips & Tricks since the creation of the series. While we’ve
discussed four broad sections that covered web, data, serverless
& productivity, there are 130+ additional tips waiting on you that
cover additional topics such as :

•	 App Services
•	 CLI
•	 Cloud Shell
•	 Cognitive Services
•	 Containers
•	 Cosmos DB
•	 Functions
•	 IoT
•	 Logic Apps
•	 Portal
•	 PowerShell
•	 Productivity
•	 Storage
•	 SQL and Search

Find all of these and more at azuredev.tips

Don't forget that if you are modernizing an existing application
or building a new app, you can get started
Azure for free and get:

•	 $200 credit toward use of any Azure service

•	 12 months of free services—includes compute, storage,
 network, and database

•	 25+ always-free services—includes serverless,
containers, and artificial intelligence

Start free

Until next time,

Michael Crump @mbcrump

 signing off...

http://azuredev.tips
https://azure.com/free
http://twitter.com/mbcrump

Azure Tips and Tricks
 azuredev.tips

Copyright © 2018 by Microsoft Corporation. All rights reserved. No part of the contents of this book may be
reproduced or transmitted in any form or by any means without the written permission of the publisher.

Made with love By Red Door Collaborative.com

http://www.reddoorcollaborative.com/

